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A probabilistic asynchronous cellular automaton described previously [Seybold, Kier, and Cheng,J. Chem.
Info. Comput. Sci.1997, 37, 386-391] has been applied to the description of molecular excited-state dynamics.
The model simulates in a visual, time-dependent fashion the variations in ground- and excited-state populations
that occur under stipulated probabilistic transition rules. Both pulse mode and steady-state conditions can be
simulated. The deterministic values for the fluorescence lifetime (τf), the phosphorescence lifetime (τp), and
the quantum yields of fluorescence (φf), triplet state formation (φT), and phosphoresence (φp) arise as limiting
cases for large numbers of cells or large numbers of trials. Since each trial is an independent “experiment”,
stochastic variations in the populations and properties can be estimated from repeated trials. Phenomena
such as ground-state depletion and population inversion under high radiation intensity arise naturally within
the model.

Introduction

Spectroscopy is the main avenue through which the details
of molecular dynamics and structure are approached. In
particular, spectroscopic studies of excited molecular electronic
states over the years have provided a rich store of information
about the behavior of these important species. Technological
advances during the past several decades have permitted more
and more sensitive detection of smaller samples, to the point
that at the present time studies of single molecules are in-
creasingly reported.1-9 The traditional approach to the analysis
of molecular excited-state dynamics relies on sets of coupled
differential equations that describe the macroscopic behavior
of the examined system in the limit of large sample size. This
approach is obviously not well-suited to the analysis of small
samples, nor does it provide information on the stochastic
aspects of the dynamics or capture well the inherently dynamic
natures of the processes involved.
Cellular automata, although not presently widely applied in

chemistry, offer a very different and potentially highly insightful
approach to the analysis of the dynamical behavior of molecular
systems. We have recently described a probabilistic cellular
automaton capable of accurately simulating processes of first-
order chemical kinetics.10 The cellular automaton simulates,
for example, the stochastic behaviors expected in exponential
decay, consecutive reactions, first-order equilibria, rate-limiting
steps, pre-equilibria, and other classic processes in chemical
kinetics. The deterministic solutions, as given by the traditional

macroscopic analysis, emerge as limiting cases of the cellular
automata approach. In this report we describe application of
this cellular automata approach to the general treatment of
molecular excited-state behavior. In later reports we will
describe applications of the model to specific molecular species
and also to such phenomena as laser action, luminescence
quenching, and energy transfer.

The Traditional Approach

Studies of molecular excited-state dynamics are typically
carried out in one of two modes:pulsemode andsteady-state
mode. In the pulse mode a flash (often from a laser) excites
the system, and the subsequent evolution of the system is
monitored by observing the time course of emission or absorp-
tion processes.11 Typically this mode provides information
about such details of the dynamics as the fluorescence and
phosphorescence lifetimes, triplet-triplet absorption spectra, the
appearance and decay rates of intermediates, and possibly events
related to energy transfer and other time-dependent processes.
In the steady-state mode excitation is continuous. This mode
is normally employed to find the luminescence spectra and,
using any of a variety of techniques, the quantum yields of
fluorescence, phosphorescence, and triplet formation.
Within this framework the excited-state dynamics of a

molecule are understood by determining the rate constants of
its radiative and nonradiative excited-state transitions.12,13 In
the simplest and most typical case the dynamics of organic
molecules can be interpreted in terms of just three states: the
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ground state S0, the lowest excited singlet state S1, and the lowest
triplet state T. The relationship of these states is illustrated by
a Jablonski diagram,14-16 as shown in Figure 1. As first noted
by Kasha, because of the rapidity of intramolecular nonradiative
conversions among higher excited states, most organic molecules
emit significant luminescence only from their lowest excited
states of a given multiplicity: fluorescence from the lowest
excited singlet state and phosphorescence from the lowest triplet
state.17 Exceptions to this rule, such as azulene, are naturally
of special interest, and the diagram can be modified accordingly.
The excited-state dynamics are governed by the coupled

differential rate equations that describe the production and
depletion of the ground and excited states.14,15 In the above
simple case these rate equations are

Here kabs represents a product of the Einstein coefficient of
stimulated absorptionBmn and the radiation field intensityF(ν)
at the frequencyν of the exciting radiation, as modified by
experimental conditions according to Beer’s law. Equations
1-3 lead to the following expressions for the fluorescence
lifetime (τf), the phosphorescence lifetime (τp), and the quantum
yields of fluorescence (φf), triplet state formation (φT), and
phosphoresence (φp) in terms of the rate constants:

The fluorescencenatural radiatiVe lifetime, defined asτnr )
1/kf, is the lifetime of the excited singlet state expected if
competing nonradiative decay modes were absent; experimen-
tally it can be estimated from the absorption spectrum.
Equations 1-3 are deterministic in the sense that they

represent absolute behaviors expected in the limit of very large
numbers of molecules. These equations provide no information
on the stochastic fluctuations expected in the values of the
properties described, nor are they expected to be reliable

descriptions of behavior as the limit of small numbers of
molecules is approached.

Cellular Automata

Cellular automata were first proposed by Ulam18 and von
Neuman19 a half century ago, but only with the more recent
development of modern digital computers has their scientific
potential begun to be fully realized. In their most common form
cellular automata consist of a rectangular grid composed of cells,
in which each cell can exist in a number of discrete states. Given
a specific starting configuration of the cells, evolution of the
system is governed by a set of local rules. These rules are
applied at every time iteration of the automaton, so that cellular
automata, unlike the conventional approach, are discrete not only
in state but also in space and time. The rules are normally of
two types: moVementrules, which determine whether a cell
will move to an adjacent space on the grid, and statetransition
rules, which determine if a cell will change its state, and can
be either fixed or probabilistic in nature. Evolution of a
particular system according to its local rules frequently leads
to the appearance of unexpected patterns, calledemergent
properties, which in many important cases can be associated
with related natural phenomena. Because of the almost
unlimited possibilities for the rules and starting conditions, the
simple cellular automaton concept leads to an enormous variety
of possible realizations, and cellular automata have been applied
to a wide range of applications in both physics20-25 and
biology,26-28 and to a lesser extent in social science29 and
chemistry.30-32

Kier and Cheng have recently developed a series of computer
programs utilizing asychronous probabilistic cellular automata.
In these, ann× mgrid of cells evolves in a series of time-step
iterations according to probabilistic rules; the procedure is
asynchronous in the sense that at each iteration each cell, in
random order, is given a chance to move and/or change its state.
The possible states are conveniently represented by different
cell colors. Applications have included water structure,33

solution phenomena,34-36 partitioning of a solute between two
liquids,37 micelle behavior,35,38 diffusion,39 enzyme kinetics,40

and membrane permeability.41

Application to Excited-State Dynamics

As noted, we recently presented a cellular automaton model
for first-order kinetics and demonstrated its application to a
number of classic examples of first-order chemical kinetics
processes.10 The first-order kinetics cellular automaton realiza-
tion is especially simple since only state transition rules are
needed, and these rules are independent of the cells’ surround-
ings. Because the state transition rules are probabilistic, each
“run” of the system is an independent trial, potentially leading
to a different result. However, in the limit of a large number
of cells (i.e., grid sizen × m ) N) in the system, the overall
behavior approaches that expected from the traditional deter-
ministic model. By using multiple runs, the stochastic behavior,
as well as the average behavior, of the system can be determined.
Further details are found in our previous study.10

We have developed two models for the simulation of
molecular excited-state dynamics, as shown in Figure 2. In the
most simple model (Figure 2a) only three states (A, B, and C)
are included, and probabilitiesPij for transitions between these
states are assigned to represent in a relative manner the total
transition probabilities expected between the corresponding
states of Figure 1. Although this simple model does not
distinguish competing radiative and nonradiative transitions, it

Figure 1. Jablonski diagram of molecular electronic states: radiative
transitions are indicated by solid lines and nonradiative transitions by
dashed lines.

d[S0]

dt
) -kabs[S0] + (kf + k1)[S1] + (kp + k3)[T] (1)

d[S1]

dt
) kabs[S0] - (kf + k1 + k2)[S1] (2)

d[T]
dt

) k2[S1] - (kp + k3)[T] (3)

τf ) 1/(kf + k1 + k2)

τp ) 1/(kp + k3)

φf ) kf/(kf + k1 + k2)

φT ) k2/(kf + k1 + k2)

φp ) kpφT/(kp + k3)
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does allow overall dynamic behavior of the system to be
examined and analyzed in an especially simple and heuristic
manner. To simulate the “pulse” mode of operation, it is most
convenient to assignPAB ) 0 and start with allN cells in state
B: evolution of the system then consists in a cascade from B
down to A, partly via state C. One can, for example, determine
the excited-state lifetimesτB and τC from an examination of
the time-dependent populations of states B and C. In the
“steady-state” modePAB is assigned a nonzero value, and the
populations of the states can be monitored as they evolve to
their equilibrium values (with inherent stochastic fluctuations).
A more complete model is shown in Figure 2b. In this, as a

counting convenience, we introduce “virtual states”; these states
have unity probabilities of decaying to lower states and thus
last for only a single iteration. If the probabilities of the “real”
transitions are relatively small compared to unity, the presence
of these virtual states will have no appreciable effect on the
time evolution of the system. By counting transitions through
the virtual states one can distinguish radiative and nonradiative
transitions and determine the quantum yieldsφf, φT, andφp;
neither these yields nor the lifetimesτB andτC are altered by
the presence of the virtual states. The pulse and steady-state
modes can thus be performed in the same manner as for the
simple model, but additional details are revealed.
Whereas in the traditional approach therate constants ki are

the fundamental parameters governing the evolution of the
system, in the cellular automaton approach thetransition
probabilities Pij play this role. It is convenient to use iterations
(itn) as the time units in cellular automaton studies: in the
present examples an iteration might be imagined to be equivalent
to a nanosecond for the purposes of simulating experimentally
observed molecular excited-state dynamics. Statistical analyses
of the data were carried out using the StatMost software
program.42

Results and Discussion

Pulse Mode. The pulse condition was simulated by begin-
ning with all cells in state B and allowing the system to evolve
under the conditonPAB ) 0. In a preliminary examination the
simple model of Figure 2a was employed with differing cell
numbersN. The transition probabilities were assigned the values
PBA ) 0.04,PBC ) 0.06, andPCA ) 0.01, as summarized in
the state transition probability matrixP.

(Note that only “transitions”, i.e., statechanges, are identified
in this notation; the probability that a state remains the same is
the residual probability.) These probabilities were designed for
purposes of illustration to correspond to the limiting determin-
istic valuesφf ) 0.40, τB ) 10 itn, andτC ) 100 itn. Half-
lives were measured by following the populations of states B
and C as they evolve in time; they can be converted to normal
lifetimes using the formulaτ ) τ1/2/(ln 2).
In the first example a single cell was examined over 10 trials,

with the results shown in Table 1. It is clear that there is a
great deal of scatter for all the properties in this example.
Lifetime results for other cell counts are shown in Table 2. The
scatter decreases as the cell count increases, and for the 1000-
and 10 000-cell trials the average values for the normal lifetimes
(τB ) 9.2 and 9.48 itn, andτC ) 101.4 and 101.1 itn,
respectively) approach those expected in the deterministic limit.
Plots of the populations of the B and C states as functions of
time are shown in Figure 3; these plots are seen to bear a strong
resemblance to the luminescence decay curves typically obtained
in photon-counting experiments with dyes.
The seven-state extended model shown in Figure 2b permits

a more detailed analysis of the quantum yields and decay
pathways. For purposes of illustration the transition probability
matrix P′ was set as follows:

This set of probabilities is designed to yield in the deterministic
limit the valuesφf ) 0.40,φT ) 0.50,φp ) 0.25,τB ) 10 itn,
andτC ) 500 itn. Using a (100× 100)) 10 000 cell grid, it
was found that virtually all (more than 99.9%) of the cells
reached the “ground” (A) state before 4000 iterations. Yields
for the various pathways could be determined from sums of
cells passing through the corresponding virtual states. The
“singlet” (B) state lifetime was estimated from linear regression
of the natural logarithm of the decay profile for this state.
Because the “triplet” (C) state has a finite rise time (see, for
example, Figure 3), reflecting its population from the decaying
B state, its lifetime was estimated from linear regression of the
decay over the interval 100-1000 itn. The values obtained for
these properties from trials of 4000 itn are shown in Table 3.
They are seen to correspond rather closely to the expected
deterministic results.
Steady-State Mode.To simulate this condition, the simple

model was first tested withPAB set to several nonzero values
that might correspond, for example, to differing levels of
exciting light intensity. Keeping the other parameters set as
indicated in the transition matrixPabove, steady-state conditions
were reached after a few hundred iterations. At a valuePAB )
0.001, which corresponds to a moderately strong exciting light
intensity, the excited-state populations of the B and C states
remain relatively small as the (fluctuating) steady-state condition
is achieved. The time-dependent variations in the state popula-
tions forPAB ) 0.001 andPAB ) 0.01 are shown in Figure 4.
It is clear that asPAB increases the steady-state populations of

a

b

Figure 2. State diagrams for the simple (a) and extended (b) cellular
automaton models. In b real states are indicated by solid lines and virtual
states by dashed lines.

P) (0 0 0
0.04 0.06 0
0.01 0 0)

P′ )(0 0 0 0 0 0 0
0 0 0.05 0.04 0.01 0 0
0 0 0 0 0 0.001 0.001
1.0 0 0 0 0 0 0
1.0 0 0 0 0 0 0
1.0 0 0 0 0 0 0
1.0 0 0 0 0 0 0

)
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the excited states B and C increase substantially and the
population of the ground state becomes depleted, in accord with
the experimental effect observed at high illumination. The effect
is especially notable for the “high-intesity illumination” case
PAB ) 0.01, where the surrogate triplet state C obtains a
significant steady-state population. Average values (standard
deviations in parentheses and ranges in brackets) for the final
100 iterations of 500-iteration trials for these two cases were

The fluctuations are seen to increase substantially for the “high-
intensity” case.
Steady-state conditions were next simulated using the ex-

tended model of Figure 2b by settingPAB ) 0.001 in matrix
P′. The results are shown in Figure 5a for a case where [A])
10 000 at the start of the trial. Steady-state conditions, with
their inherent fluctuations, are reached after about 1500 itera-
tions. (Essentially the same steady-state conditions were also
achieved when all cells were in their B states at the start of a
run.) Taking the final 1000 itn of the above 5000 itn trial, the
following values (standard deviations in parentheses and ranges
in brackets) were found:

Thus under these steady-state conditions roughly 79% of the
cells are found in state A, about 1% in state B, and 20% in

TABLE 1: Results for 10 Trials with a Single Cell Using the
Simple Three-State Model. Times Are Half-Lives in
Iterations (itn)

trial

1 2 3 4 5 6 7 8 9 10 average

τ1/2(B) 12 13 51 33 2 1 22 16 5 1 15( 16
τ1/2(C) 77 55 30 300 37 100( 113
φf 1 0 1 0 0 1 0 0 1 1 0.50( 0.53

TABLE 2: Results for 10 Trials Using the Simple Model
with Differing Cell Counts

no. of cells τl/2(B) τl/2(C)

1 15( 16 100( 113
10 9.0( 4.9 53.1( 25.6
100 7.2( 1.1 57.4( 13.0
1000 6.4( 0.4 70.3( 4.2

10 000 6.57( 0.08 70.1( 1.4

Figure 3. Time variations of the populations of B and C states for a
simple 10 000-cell cellular automaton under pulse conditions.

TABLE 3: Results for Various Properties Using the
Extended Seven-State Model in Pulse Mode with a (100×
100) Grid

property average range

τ(B)a 9.37( 0.16 9.18-9.60
τ(C)a 492( 14 476-510
φfb 0.4007( 0.0036 0.3944-0.4057
φTb 0.5002( 0.0038 0.4949-0.5052
φpb 0.2505( 0.0036 0.2469-0.2579

a Five trials.b Ten trials.

[A] [B] [C]

PAB ) 0.001 9348 ((9) 94 ((8) 558 ((7)
[9332-9368] [73-106] [538-572]

PAB ) 0.01 5850 ((23) 571 ((24) 3578 ((22)
[5797-5905] [514-621] [3528-3624]

Figure 4. Time variations of the populations of the states of a simple
10 000-cell cellular automaton under steady-state conditions: (a) with
PAB ) 0.001, (b) withPAB ) 0.01.

[A] [B] [C]

PAB ) 0.001 7919 ((19) 80 ((10) 1994 ((20)
[7875-7963] [52-113] [1956-2041]
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state C. Normally fewer than 0.1% of the cells are in the virtual
states at any time after the steady-state condition is reached.
Changing the “triplet” yield by, for example, increasingPBC

to 0.08 and decreasingPBD to 0.01 has only a relatively small
effect on the steady-state populations. One finds roughly 71%
in state A, less than 1% in state B, and 28% in state C under
these conditions.
Increasing the excitation probabilityPAB, however, has a

significant effect on the steady-state populations. SettingPAB
) 0.01 and keeping the other probabilities as shown in matix
P′ yields the curves shown in Figure 5b. It is seen that under
these conditions apopulation inVersionis achieved, with roughly
69% of the cells in the surrogate triplet state C under steady-
state conditions. Now only about 28% of the cells are in the
“ground” A state, and the “singlet” B state population is just
under 3%, significantly higher than that for the “lower intensity”
condition. These results are in contrast to those found earlier
for the simple model for which the C-state decay probability
wasPCA ) 0.01 and for which no population inversion was

achieved. It is apparent that decreasing the C-state decay
probability by a factor of 5, or alternatively, increasing the
lifetime of this state by the same factor, has had a dramatic
effect. Thus the relative state populations are seen to depend
crucially on the light intensity, represented here byPAB, and
the metastable state lifetime, determined by the total transition
probabilities of the pathways depopulating state C.

Conclusions

Two relatively simple cellular automata models of molecular
excited-state dynamics have been presented. Both pulse and
steady-state modes of behavior can be simulated by the models.
The simple three-state model shows the time-dependent varia-
tions in state populations in an especially attractive, heuristic
way. The extended seven-state model, which employs virtual
states, allows competing radiative and nonradiative channels to
be distinguished and the corresponding quantum yields of these
pathways to be discerned. Thus properties such as the fluo-
rescence and phosphorescence lifetimes and the quantum yields
of fluorescence, triplet state formation, and phosphoresence
emerge in a natural manner. Both models can be applied to
samples as small as a single molecule and demonstrate the
stochastic variations to be expected in the state populations and
properties for finite samples. Traditional deterministic values
for the properties emerge as statistical averages in the limit of
large numbers of cells or trials.
It is apparent that suitably constructed cellular automata

models accurately reproduce the major features and stochastic
variations of molecular excited-state dynamics. In addition, we
argue that the cellular automaton models, which simulate
aggregate effects from individual events, are in fact more
realistic representations of the atomic and molecular level
phenomena to which they correspond (and which likewise
depend on discrete events) than are the deterministic coupled
differential rate equations. Cellular automata models, therefore,
should be highly useful for a wide variety of applications
involving the simulation and analysis of other molecular
dynamic processes.
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